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ABSTRACT 

In this paper, a Lorentz force magnetometer demonstrates 
quadrature frequency modulation (QFM) operation. The Lorentz 
force magnetometer consists of a conventional 3-port resonator, 
which is put into oscillation by electrostatic driving and sensing. 
The bias current flowing through the resonator is proportional to the 
displacement, and generates Lorentz force in quadrature with the 
electrostatic force. As a result, the Lorentz force acts as an 
equivalent spring and the magnetic field can be measured by reading 
the change in oscillation frequency. The sensor has a sensitivity of 
500 Hz/T with a short-term noise floor of 500 nT/√Hz. The 
bandwidth of the sensor is increased to 50 Hz, a factor of 12 greater 
than that of the same resonator operating in amplitude-modulated 
(AM) mode. 

 
INTRODUCTION 

Many Lorentz force magnetometers have been proposed in 
recent years [1-3]. The MEMS magnetometer is entirely silicon, 
sharing the same fabrication process as commercially available 
accelerometers and gyroscopes. A single-structure 3-axis 
magnetometer has also been reported [3], giving it great potential to 
be used as an electronic compass in smart phones. Compared to the 
commercially available Hall-Effect sensors currently used in smart 
phones [4], MEMS magnetometers do not require 
flux-concentrators for 3-axis measurement and are free from 
magnetic hysteresis.  

This work demonstrates a resonant Lorentz force 
magnetometer with quadrature frequency modulation (QFM) 
readout. Readout control electronics based on amplitude modulation 
(AM) and fabrication of the device were reported in [1]. A 
conventional AM magnetometer modulates low frequency magnetic 
field to a frequency near the device’s resonance frequency. The 
motion resulting from the Lorentz force is therefore amplified by the 
mechanical quality factor (Q) of the sensor, and the motion’s 
amplitude is used as a measure of the input magnetic field. Although 
Brownian-limited noise floor can be achieved, AM magnetometers 
suffer from small bandwidth and large temperature sensitivity. In an 
FM magnetometer, input magnetic field results in a change in the 
oscillation frequency by varying the stiffness (k) of the sensor. Two 
different methods for FM modulation have been reported in the 
literature. A straightforward method is to use Lorentz force to 
generate axial stress [5] which results in a change in k of the 
oscillator and therefore the resonance frequency of the oscillator 
changes. The other method is to use quadrature frequency 
modulation (QFM), where an external force having the same 
frequency as, but in quadrature with, the self-sustaining force 
creates a phase shift in the oscillation loop. This phase shift results 
in a change in the oscillation frequency, since oscillation always 
occurs at the frequency that satisfies 0° phase shift around the loop. 
MEMS QFM gyroscopes (having Coriolis force as the external 
force) [6] and magnetometers (having Lorentz force as the external 
force) [7] were demonstrated. Using the same MEMS 
magnetometer structure, magnetic field can be either amplitude 
modulated (AM) or frequency modulated (FM) by controlling the 
phase difference between the Lorentz force and electrostatic force. 
Relative to earlier AM magnetometers, QFM operation extends the 

sensor’s bandwidth from a few Hz to 50 Hz, which is independent 
from the sensor’s mechanical bandwidth. QFM operation also 
significantly increases the dynamic range. 

 
THEORY 
System Dynamics 

The MEMS Lorentz force magnetometer is based on a 
traditional three-port MEMS resonator operating as an oscillator. 
The resonance frequency serves as the system reference clock for 
the bias current generation.  

The system dynamics of the Lorentz force magnetometer can 
be modeled as a second order mass-spring-damper system: 
ሷݔ݉  + ሶݔܾ + ݔ݇ = ாܨ +  ௅  (1)ܨ
where m is the effective mass, b is the damping coefficient, k is the 
spring constant, FE is the electrostatic driving force and FL is the 
Lorentz force. In the operation of a QFM magnetometer, FL is 
always in phase with the displacement ݔ: 
௅ܨ   = ܮܫܤ =  (2)  ܮݔூܣܤ
where the bias current gain AI is used here to represent the bias 
current to displacement ratio,  AI=I/x, which is controlled by the 
electronics. By replacing the Lorentz force FL according (2), the 
equation of motion (1) can be written as  
ሷݔ݉  + ሶݔܾ + (݇ − ᇣᇧᇧᇤᇧᇧᇥ௞೐೑೑(ܮூܣܤ ݔ =  ா  (3)ܨ

It is clearly seen from (3) that the magnetic field modifies the 
effective spring constant of the device, ݇௘௙௙. Therefore, when the 
resonator operates in closed-loop, the magnetic field signal can be 
observed through a change in oscillation frequency.  

To demonstrate the principle of operation, the open-loop 
force-to-displacement frequency response of the QFM 
magnetometer is measured. Figure 2 shows the amplitude (top) and 
phase (bottom) characteristics. In this measurement, the bias current 
gain is set to AI = -3200 A/m. The black trace in Figure 2 shows the 
response of the magnetometer in the absence of an external 
magnetic field, whereas the blue and red traces show the 

Figure 1:  Amplitude (top) and phase (bottom) characteristics of the
QFM magnetometer with no external magnetic field applied (black
trace) and ±50 mT magnetic field (blue and red traces) applied. 
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frequency change. 
The bias current driving through the proof-mass to produce 

Lorentz force (F=BIL) is generated using the electrostatic 
oscillation signal with a 90° phase shift. Thus, at resonance, the 
Lorentz force is always in quadrature with the electrostatic force. 
The AM and QFM modes can be implemented using the same 
resonator design with different phase shift (0° or 90°) between the 
electrostatic drive and bias current signals. 

 
RESULTS 

Figure 4 shows the output frequency versus input magnetic 
field of the magnetometer. The magnetometer is driven at a fixed 
oscillation amplitude of 19 nm. During all measurements, a 
0.9 mArms bias current driven through the 155 Ω proof-mass results 
in 125 μW power consumption in the MEMS resonator. The bias 
current gain is AI = -6700 A/m. The measured sensitivity is 
500 Hz/T, close to the theoretical value of 493 Hz/T. We use 
customized Helmholtz coils to generate magnetic field for testing. 
The maximum field is limited to 3.6 mT by the power limit of the 
coil. The nonlinearity of the sensor is negligible in this range, and 
the theoretical linear operating range is 2.36T (assuming 1% 
non-linearity). The inset shows a real-time measurement in response 
to a 400 μT magnetic field input with a frequency of 20 Hz. 

 

 
Figure 5 shows the frequency response of the magnetometer. 

Theoretically, the mechanical sensor in FM operation has unlimited 
bandwidth. Here, to reduce the total noise at the PLL output, the 
transfer function of the PLL limits the system bandwidth to 50 Hz. 
The measured sensor response matches well with the predicted 
transfer function of the digital PLL.  The 3 dB bandwidths for QFM 
and AM operation are illustrated by the red dotted line. The 
bandwidth of the magnetometer is extended to 50 Hz in QFM 
operation compared to AM operation, in which the bandwidth is 
only 4 Hz. It has been experimentally shown that the bandwdith is 
improved by 12X in the QFM operation compared to the AM 
operation, independently from the mechanical sensor bandwidth. 

 
Figure 6 shows the measured oscillator output spectrum in 

response to input magnetic field (40 μT) at 10 Hz, 20 Hz, 30 Hz and 
40 Hz. The magnetic field appears as double-sided FM sidebands, 
which is consistent with narrowband frequency modulation. A 
nearly constant sensitivity over the frequency range is also 
observed. The slight amplitude difference observed at 30 Hz and 
40 Hz is due to the frequency response of the PLL which exhibits 
some gain peaking at these frequencies.  

Figure 7 shows the measured noise floor of the magnetometer. 
Although QFM operation provides constant sensitivity, in a wide 
sensor bandwidth the noise floor increases as the modulation index 
decreases. The long-term noise is dominated by the close-to-carrier 
phase noise of the oscillator, whereas the short-term noise is 
dominated by the far-from-carrier phase noise. A fitting of the 
sensor’s noise floor shows a -10 dB/decade region close-to-carrier, 
followed by a flat region, and finally a +20 dB/decade region 
far-from-carrier. These three regions correspond to the 1/f3, 1/f2 and 
white noise components of the phase noise. The loop filter in the 

Figure 4. Output frequency vs. input magnetic field of the
magnetometer. The measured sensitivity is 500 Hz/T. Inset:
Measured output for 20 Hz 400 μT field input. 

  

Figure 5. Frequency response of the magnetometer showing QFM
achieves 12x greater BW than AM operation. The measured
frequency response of the sensor output is shaped by the transfer
function of the PLL. 

Figure 6.  Measured oscillator output spectrum for 10 Hz, 20 Hz, 30
Hz and 40 Hz magnetic field (40 μT). 
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PLL will also affect the far-from-carrier phase noise. The noise 
floor is 500 nT/√Hz at frequencies from 3 Hz to 20 Hz, which is 
comparable to the Brownian-limited noise floor for the same 
magnetometer operating in AM mode. The dynamic range is 
expected to be 133 dB. The phase noise is measured as -92 dBc/Hz 
at 10 Hz. When normalized to GSM’s 13 MHz [10], the phase noise 
is -50 dBc/Hz at 10 Hz. Table II compares Lorentz force 
magnetometers with different operation methods. 

 

 
 

 
CONCLUSION 

In conclusion, we demonstrate the QFM operation of a Lorentz 
force magnetometer based on a 105.5 kHz MEMS oscillator. The 
magnetometer achieves a sensitivity of 500 Hz/T for 0.9 mArms bias 
current. A Brownian limited noise floor of 500 nT/√Hz is also 
measured. Compared to the conventional AM magnetometer, QFM 
mode provides lower temperature sensitivity, larger sensor 
bandwidth (50 Hz vs. 4 Hz) and larger dynamic range (2.36 T vs. 
10 mT), demonstrating great potential for electronic compass 
applications.  
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Figure 7.  Measured noise floor showing Brownian limited noise
from 3 Hz to 20 Hz.   

TABLE II 
COMPARISON OF LORENTZ FORCE MAGNETOMETERS 

Parameter OPERATION METHODS 
AM Axial Stress FM Quadrature FM 

Readout Amplitude Frequency Frequency 
Sensitivity ILQ/k AfnIL/k * fnIL/(2kx) 
Bandwidth fn/2Q Unlimited Unlimited 

Bias Current In phase DC current Quadrature 
Brownian- 

limited 
Resolution 

ඥ4݇௕ܾܶܮܫ  
ඥ4݇௕ܾܶܮܫ  

ඥ4݇௕ܾܶܮܫ  

*A is a coupling coefficient that depends on the device geometry. 
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